Multi-complementary and unlabeled learning for arbitrary losses and models

نویسندگان

چکیده

A weakly-supervised learning framework named as complementary-label has been proposed recently, where each sample is equipped with a single complementary label that denotes one of the classes does not belong to. However, existing methods cannot learn from easily accessible unlabeled samples and multiple labels, which are more informative. In this paper, to remove these limitations, we propose novel multi-complementary allows unbiased estimation classification risk any number labels samples, for arbitrary loss functions models. We first give an estimator then further improve by incorporating into formulation. The error bounds show in optimal parametric convergence rate. also correction scheme alleviating over-fitting caused negative empirical risk. Finally, experiments on both linear deep models effectiveness our methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Multi-Positive and Unlabeled Learning

Yixing Xu†, Chang Xu‡, Chao Xu†, Dacheng Tao‡ †Key Laboratory of Machine Perception (MOE), Cooperative Medianet Innovation Center, School of Electronics Engineering and Computer Science, PKU, Beijing 100871, China ‡UBTech Sydney AI Institute, The School of Information Technologies, The University of Sydney, J12, 1 Cleveland St, Darlington, NSW 2008, Australia [email protected], [email protected]...

متن کامل

Multi-view Positive and Unlabeled Learning

Learning with Positive and Unlabeled instances (PU learning) arises widely in information retrieval applications. To address the unavailability issue of negative instances, most existing PU learning approaches require to either identify a reliable set of negative instances from the unlabeled data or estimate probability densities as an intermediate step. However, inaccurate negative-instance id...

متن کامل

Unified subspace learning for incomplete and unlabeled multi-view data

Multi-view data with each view corresponding to a type of feature set are common in real world. Usually, previous multi-view learning methods assume complete views. However, multi-view data are often incomplete, namely some samples have incomplete feature sets. Besides, most data are unlabeled due to a large cost of manual annotation, which makes learning of such data a challenging problem. In ...

متن کامل

investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency

تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2022

ISSN: ['1873-5142', '0031-3203']

DOI: https://doi.org/10.1016/j.patcog.2021.108447